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m a y  
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Abstract. Collective diffusion of lattice gases of arbitrary concentrations is investigated in 
lattices of dimensions d 2 2 with nndomly distributed site energies. The Gaussian, exponentinl 
and dichotomic distributions of site energies are employed. An effective medium theory of the 
coefficient of collective diffusion is given using symmetrized single-particle transition mtw. A 
previous phenomenological theory is rederived in the limit d + 00. The effective medium 
theory gives good agreement with simulation &fa a1 smaller panicle concenmtions, and rough 
agreement at large particle concentrations. 

1. Introduction 

Diffusion of lattice gases in disordered lattices is an important problem in view of the 
various applications of this model. Lattice gas particles occupy the sites of lattices; multiple 
occupancy of the sites is excluded. Disorder is usually introduced in the form of random, 
quenched transition rates for the particles between neighbouring sites. Examples for lattice 
gases in disordered lattices are provided by hydrogen in random alloys [ I ,  21, charge carriers 
in mixed oxides [3], and particles on disordered surfaces [4]. Also hydrogen in metglasses 
has been modelled as a lattice gas in disordered lattices, with appropriate distributions of the 
site energies 151. Further, superionic conductors with random immobile constituents belong 
to this class [6]. Thus there is much practical need to comprehend diffusion of lattice 
gases in disordered systems. The difficult theoretical problem is the proper treatment of the 
correlations between the occupancies of different sites by the particles in non-equilibrium 
situations. This problem has been addressed in several papers that were devoted to one- 
dimensional chains [7, 8,9, IO], but no complete solution at arbitrary particle concentrations 
has been found for the disordered chains. 

Our aim in this paper is somewhat different. We will present an effective medium theory 
for collective diffusion in disordered lattices of dimensions d > 2. This approximate theory 
will be based on effective single-particle transition rates, in which the correlation effects 
mentioned above are neglected. Hence we employ two approximations together, yet the 

many particles in lattices with random traps that can be saturated by the diffusing particles 
has been of continuing interest to metal physicists [ I ,  11, 12, 131 as well as to surface 
physicists [14, 151. Hence they have developed phenomenological theories which are based 
on the decomposition of the diffusion coefficient into a kinetic factor and a thermodynamic 
factor. The thermodynamic factor can be calculated from equilibrium statistical mechanics, 
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~ ~ results constitute an improvement over previous phenomenological theories. Diffusion of 
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but the kinetic factor requires additional assumptions. A minimal requirement for any theory 
is that it should give the correct low-concentration limit. This requirement was not met by 
the early theories [ I  I ,  121. A satisfactory phenomenological formula was finally given by 
Brouwer et al [Z]; see also Salomons [16]. 

It was pointed out in previous work 117, 181 that the phenomenological theory’fails 
generally in the limit of large particle concentration. This will also be discussed in 
some detail in this paper. Here it may suffice to mention that percolation effects are 
not properly included in the phenomenological kinetic factor. The effective medium theory 
to be developed here does somewhat better in this respect, although complete agreement 
between theory and simulations is not obtained. This theory also allows us to elucidate the 
nature of the approximation of the phenomenological theory. 

In the following section we will introduce the site energy model and give the single- 
particle transition rates that are used later. The phenomenological theory is described in the 
third section, and the effective medium theory is developed in the fourth section. Results 
of computer simulations are compared with the theories in section 5, for three different 
distributions of the site energies. Section 6 then contains concluding remarks. A preliminary 
account of this work is contained in the conference contribution [19]. 

2. Model 

We study the customary latticegas model where particles occupy the vertices of d- 
dimensional hypercubic lattices. The vertices or ‘sites’ are labelled by integers 1. Multiple 
occupancy of the sites is not allowed. Apart from the exclusion of multiple occupancy, no 
further interactions between the particles are taken into account. The overall concentration 
c of the particles is defined as c = N , / N  where Np is the number of particles and N the 
number of lattice sites. The particles may perform transitions to empty neighbour sites with 
prescribed transition rates. Random transition rates are assigned to pairs of neighbouring 
sites of the lattices. hence we have quenched disorder. 

In the random site energy model the set of random transition rates is introduced by 
the assignment of random site energies E, (Er < 0) to the lattice sites. The energies are 
taken from a common distribution u ( E )  and the distribution may be dichotomic, Gaussian 
or exponential. The transition rate originating from site I is given by the Arrhenius law 

and it does not depend on the energies of the final sites. The coefficient B is the inverse 
temperature and ro is a frequency constant which will be taken as unity. The introduction 
of the Arrhenius law provides a physical motivation for the model. Abstractly it is defined 
by the specification of a set of random transition rates (r/] where the rates depend on the 
initial sits but not on the final ones. The random site energy model is a prototype model for 
diffusion of particles in the presence of temporary trapping centres. It has been used, e.g., 
for diffusion in metals with a dilute concentration of traps [ 11, 121, but also for hydrogen 
diffusion on metglasses [ 131. More complicated models take the energy differences between 
the initial and final sites’into account [22], or also modifications of the saddle point energies 
between the sites [I]. 

Collective diffusion of the lattice gas where the identity of the particles is disregarded 
is completely described by the set of probabilities P(Z, t )  of finding a particle at site 1 at 
time t .  Appropriate initial conditions have to be specified. The quantity P(1, f) obeys a 
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master equation 

The notation (if)! designates the summation over all neighbouring s’m 1’ of 1. P(1’. i, t )  is 
the joint probability that at time r site 1’ is occupied by a particle and site I is unoccupied, 
indicated by the overbar, The quantity r,+p is the transition rate from site 1 to 1‘. In the 
random site energy model the rate r,-,,, only depends on the stariing site I of a particle 
transition, hence we can set 

r, := r,-,,,. (3) 
The equilibrium occupation of a lattice site.with energy El by a particle is given by the 

Fermi function, P(1)  = f (Er), where 

and p = p(c), the chemical potential for a given particle concentration c. It is determined 
from 

0 

c = l, dE v ( E ) f  (E) .  (5) 

A stationary solution of the master equation is obtained when the condition of detailed 
balance is fulfilled, 

(6) rlp(i)[i - P(~’)I = rl.p(io[I - P(I) I .  
The difficulty in solving the master equation (2) arises from the joint probabilities. The 

joint probabilities that appear in (2) may be related to the joint probability P(Z’, I ,  t )  of 
finding a particle at site 1’ and another particle at site 1 at time t by 

(7) 
This equation follows from the fact that non-occupancy and occupancy of site 1 are mutually 
exclusive events. The analogous relation holds with the unoccupied site f. If the transition 
rates between the sites are symmetric, r,+f, = rp-1, then the joint probabilities P(l ,  1’. t )  
cancel each other in the master equation (2). In this case the problem is reduced to a 
single-site problem, which is formally equivalent to a single-particle problem [ZO. 211. ~ 

The random site energy model where the rates depend on the initial sites, but do not 
exhibit a symmetry between neighbouring sites, cf. (3), is the simplest non-trivial case 
where the joint probabilities have to be taken into account. The joint probability P(1, Z’, t )  
factorizes in equilibrium, but not in the general, time-dependent case. 

A reduction to a single-site problem is achieved by factorization of the joint probability 
P(1, 1’, t )  and linearization near equilibrium. This direct factorization yields asymmetric 
transition rates [lo] which are useful for the treatment of the one-dimensional problem. 
Miller and Abraham [22] considered the hopping conductivity of electrons between sites 
of different energies and reduced the problem to a random network problem with symmetric 
impedances between the sites. The factorization of the joint probabilities is implicit in their 
work. Gartner and Pitis introduced symmetrized rates in their treatment of the disordered 
chain [9]. We will utilize later such symmetrized rates, and they read for the random site 
energy model after a suitable normalization 

P(I‘, i, t )  + P(P, 1, f) = P(1’, t ) .  

(8) 
a p  rsym = rrP(l)(l - ~(i’)),!?-. 
ac 
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The symmetry of these rates is obvious from the condition of detailed balance (6). The 
normalization factor is given by 
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(9) 
aF p -  = [P(l)(l - P( l ) )J - ' .  
ac 

The curly brackets indicate the average over the distribution p(r) of the transition rates. 

3. Previous approaches 

Gartner and Pitis 191 have published a mean field theory of collective diffusion on linear 
chains and given a recursion method for calculating decreasing upper bounds of the 
collective diffusion coefficient D c o ~ ~ .  The coefficient of collective diffusion is defined by 
the diffusion equation @e.. Fick's second law) describing the decay of density deviations 
on a mesoscopic scale, 

(10) 
d 
--P(l. r) = Dcol~AP(l .  t ) .  
dr 

The mean field result for D,II is identified by restricting the resolvent of the master-evolution 
operator to a singleparticle subspace. Their result is 

An equivalent result was obtained in [lo] from the asymmetric mean field transition rates 
by using first-passage time methods. 

The result (11) gives the correct low-concentration limit. In this limit the diffusion 
coefficient reduces to the diffusion coefficient of single, independent particles in the random 
site energy model, which is exactly known [23], 

D, = {r-1]-'. (12) 

The diffusion coefficient of single particles is defined by the diffusion equation for the 
probability density of a single particle. Note that (12) is valid in all dimensions d, while 
(1 1) or the equivalent result in [lo] is only valid in d = 1. Since (12) is an exact result, it can 
serve as a criterion for the correctness~of the low-concentration limit of further approximate 
results. 

In the large-concentration limit diffusion is effected by single, independent vacancies, 
and D,,II = Dsv. The diffusion coefficient Dsv of single vacancies in the site energy model 
is given for linear chains by [lo] 

D,, = [r}-I[r-l}-*. (13) 

Also (11) approaches this expression in the limit c + 1. From elementary probability 
theory we obtain, assuming that the pertinent moments exist, 

[r-fJ-l 4 {r}. (14) 
This equation leads to 

Dsv < Dsp (15) 

for arbitrary energy distributions in the onedimensional random site energy model. 
In higher dimensions further approximations are necessary. In the next section we 

will formulate an effective medium theory in arbitrary dimensions. In the remainder of 
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this section we describe the phenomenological theories that were given in the past. The 
phenomenological theories are essentially based on the Nernst-Einstein relation 

This relation gives a decomposition of the diffusion coefficient into a kinetic factor B and 
a thermodynamic factor caplac. The calculation of the thermodynamic factor poses no 
problem since it follows from equilibrium statistical mechanics. The concentration can also 
be represented as c = { P ( i ) ]  and aj+c has been given in (9). This equation is easily 
evaluated, e.g., for the dichotomic model. The situation is quite different for the kinetic 
factor or mobility B where assumptions have to be made. One has B = Br(1  - c) for 
the lattice gas on lattices with uniform transition rates r. The phenomenological theory, if 
correctly formulated, replaces Bc by the average 

B{rrP(o[i - PW. (17) 
Now the curly brackets indicate an average over the two sites involved. The result of the 
phenomenological theory is then 

An explicit result for n trap levels was given by Salomons [16], 

where vi is the fraction of lattice sites with transition rates ri and ci are the particle 
concentrations at these sites. The particle concentrations ci on the sites of type i can be 
calculated from the total concentration c and the discrete distribution of site energies Ei 
using (4) and (5). Hence the diffusion coefficient (19) is completely determined by the input 
data of the model. The phenomenological result (19) reduces to the correct singleparticle 
limit (12) in the limit c + 0. As will be discussed in section 5, the phenomenological theory 
does not give the correct result for c --f 1 for finite dimensions, hence an improvement is 
necessary. 

4. Effective medium theory 

In the effective medium theory (EMT), the problem of particle diffusion in a disordered 
lattice is replaced by a diffusion problem on an ordered lattice with effective transition 
rates. These effective transition rates are frequency dependent for the hopping problem on 
disordered lattices. The effective medium theory for this problem was developed by several 
authors [24, 25, 26, 271. In the long-time or zero-frequency limit the hopping problem 
becomes equivalent to the random-resistor problem. The effective medium theory for that 
problem was already given by Kirkpatrick [28] in the context of the percolation problem. 
The self-consistency condition of the problem with random transition rates reads in the 
zero-frequency limit 

Here r is a random but fixed transition rate that is taken from a distribution p ( r ) ,  and 
the curly brackets indicate the average over this distribution. In this formulation of the 
effective medium theory, the transition rates have to be symmetric. Symmetric transition 
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rates were introduced in the preceding section; we utilize rsym from (8) to determine rEMT 
from the self-consistency condition (20). The coefficient of collective diffusion is then 
D,.,hnT = rEMT. One can show with the help of the Fermi function (4) and the detailed 
balance relation (6) that the EMT approach leads to the right single-particle limit (12) in all 
dimensions. 

At this point we have to mention a problem in our effective medium approach. In the 
self-consistency condition (20) an average is made over a distribution p(r) of symmetric 
transition rates r. The symmetrized transition rates utilized in this paper depend on two 
site indices, 1 and l', cf. (8). This leads to an average over two random site energies in the 
self-consistency condition (20). Moreover, different bonds are not statistically independent. 
This may decrease the accuracy of our effective medium approximation, in particular for 
larger particle concentrations. For smaller concentrations, the factor (1 - P(1')) in rrym is 
less important and rsym mainly depends on one random site energy. 

T Wichmann and K W Kehr 

For the linear chain, d = 1, the result of the self-consistency condition is 

(21) 
Hence the result of the effective medium theory coincides with the correct solution of the 
disordered hopping problem. where the approximate single-particle or mean field transition 
rates are used. 

In arbitrary, finite dimensions a numerical solution of the self-consistency condition is 
necessary for general distributions, which is easily feasible. The results will be presented 
in the next section. together with the simulation results. 

EMT - phcn 

-I - I  D , ~ ~  = vSy,,,) . 

We obtain from the self-consistency condition (20) in the limit d + 03 

(22) D~~~~ - irsym) = D,,~ . 
It is reasonable that we regain the result of the phenomenological theory in this limit. The 
problem is the correct determination of the kinetic coefficient B ,  which is strongly influenced 
by the backward correlations of particles when they meet particles that are immobilized in 
deep trap sites. When the dimension, and consequently the coordination number of the 
lattice sites, becomes large, the influence of these backward correlations is diminished, and 
it is absent in the limit d + 03. Then the phenomenological considerations lead to the 
correct result. 

In the large-concentration limit. c + I, (22) gives 

D,, = u-1. (23) 
With the inequality (14) we obtain for infinite dimensions and arbitrary energy distributions 

Dsv 2 Dsp. 
This relation is opposite to the equivalent one (15) for onedimensional lattices. We will 
see later that the ratio Dlv/DSp increases with increasing dimensions, between the limits 
given by (15) and (24). 

5. Comparison with computer simulations 

To examine the validity of the effective medium theory at finite dimensions we compare its 
results with Monte Carlo simulations for several energy distributions and various particle 
concentrations. We obtain collective diffusion coefficients by observing the decay of a 
concentration profile which follows from Fick's second law (10). The system is initially 
prepared with a cosine profile in the x-direction 

c ( x )  = c + Sc(t = 0)  cos(kx) (25) 
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where k = 7 n / A  and A is the wavelength of the density disturbance. The quantity c is 
the mean particle concentration of the lattice gas and 6c(t = 0) the amplitude of the initial 
disturbance. The amplitude should he small and the wavelength large to avoid non-linear 
and k-dependent effects. We use hypercubic lattices with two or more dimensions: results 
for linear chains have already been given in [lo]. We introduce helical boundary conditions 
instead of periodic ones for computational reasons [29]. For large lattices the diffusion 
results should be independent of the choice of the boundary conditions. The lattices have 
202x200 (d = 2), 4 4 x 4 4 ~ 4 2  (d = 3). 203 x I 8  (d =4)  and 134x 11 (d = 5 )  sites. The 
special values of the edge lengths are advantageous for the vectorized computer code that 
has been used by us. Energies are selected randomly from the chosen energy distribution 
and assigned to the lattice sites. Then particles are put randomly but according to (U) 
onto the lattice. For equilibration we let the particles make transitions perpendicular to the 
density profile before starting the simulation of the profile decay. The customary lattice 
gas dynamics is used with transition rates defined in ( I ) .  We employ the fast vectorized 
algorithm described in [29]. From Fick's second law (10) we obtain a decay of the amplitude 
6c(t) as exp(-D,,llk2t). In the case of very large disorder in the energy distribution we 
observe deviations from the expected exponential decay for small times. This means we 
have deviations from the ideal diffusional behaviour of the lattice gas at smaller times and 
the diffusion coefficient has to be determined from data at larger times. 

In the following subsections we will present simulation data for the different energy 
distributions. 

5.1. Dichotomic distribution 

This distribution is characterized by two different energy levels, leading to two different 
transition rates, r and F, with r' < r. Lattice sites with transition rate r are called free 
sites and those with rc trap sites; they have concentrations 1 - ct and c,, respectively. We 
normalize the energy scale to have r = 1. Then the smaller transition rate r' is measured 
in units o f  r. In this simple case one can calculate the equilibrium distribution of the 
particles analytically and one knows the particle concentrations CI and c2 on free and trap 
sites explicitly [17]. Apart from its simplicity, the advantage of the dichotomic distribution 
is that concepts such as saturation of traps are clearly defined. In the computer simulations 
the systems are initialized in the equilibrium state and no equilibration process is necessary. 

For the dichotomic distribution we have to distinguish two different cases, namely 
ct < 1 - p c  and c, > 1 - pc, where pc  is the percolation threshold of the free sites 1301. 
First we will treat the case of small trap concentrations ct. This means that clusters of free 
sites with an infinite extension exist and long-range diffusion of particles is possible even if 
r< + 0. If F vanishes, occupied~trap sites become static blocking sites and thus hinder 
the diffusion of other particles. 

The diffusion coefficient of single particles in a lattice with randomly blocked sites of 
concentration ct < 1 - pc  is approximately given by 

where the diffusion coefficient in an ideal lattice DO = 1 in our normalization. Equation 
(26) was derived by approximate methods in [31]: the exactness of the term linear in ct 
was established in [32, 331 for d = 2. The quantity f is the correlation factor for tagged 
particle diffusion in ideal lattice gases in the limit c + 1. The correlation factor is exactly 
known for all lattices of interest [34], e.g., f = 0.466942 for the simple square lattice and 
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f = 0.653 109 for the simple cubic lattice. For d 3 the factor f can taken from the 
estimate f = 1 - 2 /z  with z the coordination number of the lattice [34]. The collective 
diffusion coefficient coincides with the single-particle diffusion coefficient in lattices with 
randomly blocked sites. as has been analytically shown in [21] and verified for the simple 
cubic lattice by numerical simulations in 1351. 

It has been pointed out repeatedly that (26) applies to diffusion of lattice gas particles 
in lattices with the dichotomic site energy distribution when ct < 1 - pc  and F << r 
[17, 181. We also utilize (26) as a reference point. Note that the expression (26) takes the 
value Do(l - ct) when f -+ 1, whence it agrees with the phenomenological result. The 
correlation factor for tagged particle diffusion is one in the limit d -+ CO; in this limit also 
the EMT agrees with the phenomenological approach. 

Figure I(a)-(c) presents the results of computer simulations for d = 2, 3, 4 and 5 ,  at 
a trap concentration cI = 0.2 and three different values of F, together with the results of 
the effective medium theory and the phenomenological expression for D,l,. 
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Figure 1. Coefficient of collective diffusion as 
a function of particle concentration and lattice 
dimension for r" = 0.1 (a). 0.01 13). and 0.001 
(c) and q = 0.2. The different symbols represent 
simulation results except (*) indicatingthe limit (26) 
for d 2 3. For d = 2 a secondader correction is 
included [32. 331. The full curves represent the ~hn 
results and the dzshed curves the phenomenological 
expression. 

The simulation data show a strongly increasing diffusion coefficient for I'" << 1 up to 
a particle concentration c X c,. The strong increase of the diffusivity is due to a saturation 
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effect, i.e.. when additional particles are put onto the lattice, more trap sites are occupied 
by them and the probability for free particles to be trapped decreases. The occupied trap 
sites impede diffusion only slightly, because c, is small and moving particles can easily 
bypass occupied trap sites. If c > c, and r' 0 occupied trap sites become permanent 
blocking sites and the collective diffusion coefficient is given by (26). In the data of figure 
l(a)-(c) the transition rate out of traps is not really zero and no completely static percolation 
lattice exists, but values of rc = 0.01 or r< = 0.001 are already sufficient that (26) can 
be applied with good accuracy. 

Figure l(a)-(c) demonstrates that the EMT agrees somewhat better with the numerical 
data for c < ct than the phenomenological expression. For c > ct the EMT underestimates 
the diffusivity while the phenomenological expression is an overestimate. Since the effective 
medium theory consists of two approximations, it no longer constitutes an upper bound to 
the diffusion coefficient, contrary to the mean field expression in d = 1 191. Generally, 
as we expected in section 4, the EMT is more accurate for smaller than for larger particle 
concentrations. 

If the particle concentration is smaller than 0.1 and d > 1 the collective diffusion 
coefficient is independent of the lattice dimension for the studied transition rates F, 
in agreement with (12). In the region of higher concentmtions the different percolation 
thresholds of the simulated lattices become more important and the diffusion coefficient 
depends on the lattice dimensionality. Comparing the simulation results with the effective 
medium theory in different dimensions we observe that the effective medium theory becomes 
more accurate with increasing d. At the same time. the differences between the EM7 and 
the phenomenological expression become smaller, and they vanish in the limit d --f ca. 
as pointed out in section 4. Now we will discuss collective diffusion in lattices with 

Figure 2. Coefficient of collective diffusion 
a function of the c0"cenUatio" Of the 

lattice gas for d = 2 and q = 0.7. 
The different symbols represent simulation 

3-c 

results with r e  = 0.l (Q), 0.01 (+), 
and 0.WI (0 The full curyes represent 

0OWl I the ~m results and the dashed curves the 0 0.2 0.4 0.6 0.8 
cancenw~on  phenomenological expression 

large trap concentrations ct > 1 - pc,  where no normal diffusion is possible for rC = 0. 
Simulations were made at ct = 0.7 in two dimensions (figure 2) and c, = 0.75 in three 
dimensions (figure 3). The simulation results show very different behaviour from that 
for small trap concentrations. As in the case of small trap concentrations we observe an 
increasing collective diffusion coefficient for paiticle concentrations c 5 ct, but the rise 
near ct is not as strong as for smaller trap concentrations. There is a peak in the diffusion 
coefficient at c % c, which seems to become more pronounced for decreasing F. 

In the region of larger particle concentrations we can no longer invoke diffusion in the 
presence of randomly blocked sites for F << 1. Now it is important that we have no real 
static occupation of the trap sites. For all concentrations collective diffusion is governed 
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a function of the concentration of the lattice gas 
ford = 3 and ct = 0.75. The different symbols 

2. 
and curves have the same meaning as in figure 0,0001 n 0.2 0.4 0.6 0.8 

cO"ce"tNli0" 

by transitions in and out of trap sites, because there exists no infinite cluster of free sites in 
the lattice and particles have to enter and leave trap sites to let the density profile decay. 
For this reason the collective diffusion coefficient is always of the order of re. 

Figures 2 and 3 show that the effective medium theory gives a better description 
of the simulation data for c c ct than the phenomenological theory. When c > cl 
the phenomenological theory fails completely in that it predicts a diffusion coefficient 
proportional to r. There are discrepancies between the results of the effective medium 
theory and the simulation data in this region, but the EMT reproduces at least the trend of 
the data. Contrary to the case of the linear chain, no exact results are available for the limit 
c + I, re --f 0 and finite ct. It is interesting to note that the diffusion coefficient for 
c --f 1 is apparently smaller than the single-particle value in d = 2 while it seems to be 
larger than it is in d = 3. We have shown in section 3 that Dsv 6 DS+ in d = 1 and in 
section 4 that Dsy D,, in the limit d = M. Hence our data indicate a gradual change 
from one to the other limit with increasing dimension. 

5.2. Gaussian disrriburion 

In this section we will discuss computer simulations of the diffusion problem for a Gaussian 
distribution of site energies, 

where c7 is the standard deviation and the mean value of the Gaussian distribution. 
Gaussian distributions of site energies are of experimental relevance. For instance, 
Kirchheim [13] considered such distributions to describe the diffusivity of hydrogen in 
amorphous metals. It is also of general interest to study other distributions than the 
dichotomic one. In the case of a Gaussian distribution of site energies no well defined 
trap concentration exists. 

The technical problem is now that the Gaussian distribution (27) gives energy values 
extending from -m to +CO. however, no positive site energies are allowed in the random 
site energy model. To resolve this problem we have to alter the distribution. We cut off 
1% of the positive tail and set the corresponding energy values to zero. In this way we get 
a modified Gaussian distribution 
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with E = -uerf-'(q) where a() is Dim's  6 function, erf() the error function and q = 0.99. 
Apart from q. the other free parameter of the distribution is the standard deviation. The 
combination with the Arrhenius law (1) introduces the temperature as a third parameter. 
In this subsection we will express U in units of the temperature. The quantity E can be 
considered as a displacement of the energy scale, which means that all transition rates (1) 
or the diffusion coefficients~~are effectively multiplied by a factor. Figures 4 and 5 show 
the simulation results of the collective diffusion coefficient in two and three dimensions as 
a function of the particle concentration. If the standard deviation is small (a = 0.1 or 

I 

............ _ 
...... 

__+-- I 
D ._ 

-/-- 

~ _/L- Figure 4. Coefficient of collective diffusion as 
a function of the concentration of the lnttice 
gas for d = 2. The different symbols represent 
simulation results with 0 = 0.1 (6). 0.5 (c), 
1 (8). and 2 (x). The full curves represent 

0 0.2 0.4 0.6 0.8 I the Em results and, the dashed curves the 

g 01.01 

mncmmiion phenomenological expression. 

...... 
.- 
8 
I 
5 0.01 

0 .- 

Figure 5. Coefficient of collective diffusion as 
a function of the concentration of the lattice gas 

U 0.2 0.4 0.6 0.8 I for d = 3. The different symbols and curves 
have the same meaning as in figure 4. conEenU;IIion 

0.5). the diffusion coefficient is approximately independent of the concentration and we get 
Dc,li x Dsp. For small standard deviations the Gaussian distribution becomes sharp and we 
get a system that is very similar to a lattice with a uniform transition rate of lattice sites with 
energy E ,  where collective diffusion becomes independent of particle concentration. For 
large parameters U the situation is different. The diffusion coefficient increases for small 
concentrations due to saturation effects, reaches a maximum at a particular concentration, 
and decreases at larger concentrations because of blocking effects. In d = 3 the maximum 
is at a larger concentration than in d = 2, because blocking effects become less important 
for higher dimensions. Up to a particle concentration c % 0.1 the diffusion coefficient is 
independent of the lattice dimension for d > 1 and U < 2. If U becomes larger we also 
will get a d dependence at smaller concentrations. Generally the d dependence increases 
with increasing U .  
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The effective medium theory agrees with the simulation data for smaller particle 
concentrations, roughly up to c = 0.5. For larger concentrations the theoretical values 
lie below the numerical ones. The phenomenological approach agrees with the data at low 
particle concentrations only. At larger concentrations it predicts larger diffusion coefficients 
than observed, and the differences become considerable for large U .  

5.3. Exponential distribution 

Finally we consider the exponential distribution of site energies. 

with E < 0. 1 u(E) = - exp (:) 
U 

This distribution is very interesting because there exists no coefficient of single-particle 
diffusion for larger values of the width parameter U andor for low temperatures. Introducing 
the parameter ci = k s T / o  one finds from (12) for ci > 1 

D,, = ro(i - (30) 

and D, = 0 for ci < I. It was demonstrated in [36] that collective diffusion still exists in 
the situation where the single-particle diffusion coefficient is zero. One may occupy the sites 
with an equilibrium concentration of particles, and superimpose a small density disturbance. 
The density deviation decays via Fick's law (lo), and a coefficient of collective diffusion 
can be deduced. The effect is apparently due to the saturation of the very deep traps by 
particles. In figure 6 data for two-dimensional lattices are presented; data for d = 3 have 

~~ ~~ 

Rgure 6. Coefficient of  cnllective diffusion as 
a function of the concentmion of the lattice 
gas for d = 2. The different symbols 
represent simulation results with ro = I and 
a = 1017 (0). 1 (+), ID 03). and 10 (x). 
The symbols (*) indicate the exactly known 
small-concentration limit (30). The full curyes 
represent the EMT results and the dashed curves 
the phenomenological expression. 

already been published in [36]. The behaviour is essentially the same in both dimensions. 
We observe stronger blocking effects in d = 2 than in d = 3, resulting in smaller diffusion 
coefficients for larger c. For the parameters ci studied we again find no dependence of the 
diffusion coefficient on the lattice dimensionality up to roughly c % 0.1. 

There is good agreement between the simulation data and the results of the effective 
medium theory, which are also presented in figure 6 ,  at lower particle concentrations. 
At larger concentrations the agreement is only qualitative. An argument put forward in 
[36] predicts Dco,j - c ' / a  - 1 for small c in arbitrary dimensions, in agreement with the 
data, the EMT and the phenomenological theory. The numerical data are consistent with 
this behaviour. At larger particle concentrations, the EMT underestimates the diffusion 
coefficient, while the phenomenological expression gives values which are considerably 
larger. 
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6.  Conclusion 

We have presented an effective medium theory of collective diffusion of lattice gases in the 
random site energy model and compared it with computer simulations for the dichotomic, 
Gaussian and exponential site energy distributions, at various particle concentrations. 
We regained a previous phenomenological expression in the limit of infinite lattice 
dimensionality. Before we discuss the relative merits of the effective medium theory we 
summarize the physical picture that emerges from the comparison of simulations with theory. 

In the region of small concentrations of the lattice gas particles collective diffusion is 
governed by the saturation of deep traps with particles. When more particles are put on the 
lattice. additional traps of low energy are occupied and the collective diffusion coefficient 
increases with increasing particle concentration. In this region the thermostatistical 
properties are more important for the diffusional behaviour than the kinetic ones. Therefore 
the phenomenological result, which approximates the kinetic factor in a qualitative, 
thermostatistical way, is found to be in good agreement with the simulations. For larger 
concentrations kinetic properties such as correlations between successive particle transitions 
in the presence of occupied lattice sites, blocking effects, etc become more important and 
the diffusion coefficient ceases to increase. The correlation effects are more pronounced for 
small lattice dimensions. 

For the dichotomic distribution of site energies we can distinguish the cases where the 
trap concentration is so small that the free sites are above the percolation threshold, and 
where it is so large that the free sites do no longer percolate. In the first case we find a 
constant collective diffusion coefficient for large particle concentration, because the occupied 
trap sites act as blocking sites in an infinite lattice, In the limit c + 1 and r' + 0 we find 
agreement with known approximations of the diffusion coefficient for lattices with blocked 
sites. In the second case, when we have a large trap concentration, dynamical processes of 
capture into and release from traps govern the diffusion process and the diffusion coefficient 
reaches a maximum at c x c,. 

The results of the effective medium theory are in good agreement with the simulation 
results for smaller particle concentration and in rough qualitative agreement at larger 
concentration, for all distributions that were studied. One may say that the effective medium 
theory is a theory which describes percolative aspects at least in a qualitative way. The 
discrepancy between the EMT and the data may be due to the fact that two approximations are 
involved in the theory (approximate single-particle transition rates in addition to the effective 
medium). Moreover, the transition rates at different bonds are not statistically independent; 
this should be more detrimental at larger particle concentrations. The phenomenological 
approach predicts generally too large diffusion coefficients; this is most pronounced at large 
particle concentrations. It becomes completely wrong in situations where a large fraction 
of trap sites is more or less permanently blocked. 

For small particle concentrations and d z 1 the diffusion coefficient is nearly 
independent of the lattice dimension. Hence the phenomenological expression may be 
used by experimentalists in this region. The agreement between simulations and the EMT 
is improved with increasing dimension of the lattice. In the limit of d + 00 the effective 
medium theory becomes equivalent to the phenomenological approximation. We believe 
that the effective medium result, or the equivalent phenomenological expression, is exact in 
the limit d + 00. 

In this paper we have not treated frequency dependence of the diffusion coefficient. It 
would be easy to extend the effective medium approach to include this dependence. The 
frequency dependence is of considerable interest for the interpretation of neutron scattering 
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experiments on metglasses 1371, and for the frequency dependence of the conductivity of 
many-particle systems, i.e., for the problem of the so called 'universal response' [38]. 

T Wichmann and K W Kehr 

Acknowledgments 

K G Wang has collaborated on the topic of section 5.3. 
correspondence concerning the effective medium theory. 

We thank P Gartner for 

References 

[ I ]  Brouwer R C. Salomons E and Griessen R 1988 Phys. Rev. B 38 10217 
[2] Brouwer R C, Rector J. Kwman N and Griessen R 1989 Phys. Rev. B 40 3546 
[3] Raffaelle R. Anderson H U. Spmlin D M and Panis P E 1990 Phys. Rev. Len. 65 1383 
[4] For references, see Mak C H. Anderson H C. and S M George 1988 J. Chent. Phys. 88 4052 
[51 Kirchheim R 1988 Prog. Murer. Sci. 32 262 
[6] See. e.g.. Superionic Solids and Solid E1ecrmlyre.s - Reeenl Trends Laskar A L and Chandra S (ed) 1989 

[7] Richards P M 1977 Phys. Rev. B 16 1393 
[8] Pitis Rand Gmner P 1991 Phys. Rev. B 43 11294 
[91 Gamer  P and Pitis R 1992 Phyr. Rev. B 45 7739 

[IO] Kehr K W. Paetzold 0 and Wichmann T 1993 Phys. Leu. A 182 135 
[I I] Oriani R A 1970 Aclu Me" 18 147 
[I21 de Avillez R R, Lauf R I and Albtetier C I 1981 Scr. M e l d .  15 909 
[I31 Kirchheim R 1982 Acrn Merall. 30 1069 
[I41 Pereyra V and Zgrablich G 1990 h g m u i r  6 118 
[IS] Pereyra V. Zgrablich G and Zhdanov V P 1990 Lnngrnuir 6 691 
I161 Salomons E 1988 1. Phys. C: SolidSrare Pkys. 21 5953 
[I71 Kehr K W and Paemid 0 1992 Phyicu A 190 I 
[I81 Kehr K W and Paellold 0 1993 Defect andDifu.dm Forum vol 954.  p1167. 
[I91 Kehr K W and Wichmann T Pmc. <$fire 5rh M u  Born Syinp. on O a k i o n  Procesres (Springer: kclure 

I201 Kutner R 1981 Phys. k r r .  81A 239 
[211 Kutner R and Kehr K W 1983 Phil. Mug. 48 199 
[221 Miller A and Abmhams E 1960 Phys. Rev. 120 745 
[23] Haus J W and Kehr K W 1987 Phys. Rep. IS0 263 
[24] Bryksin V V 1980 Sov. Phys.-SolidSrrrre 22 1194 
[25] Summerfield S 1981 Solid Srnte Cormun. 39 401 
[26] Odogaki T and L a  M 198 I Phys. Rev. B 24 5284 
[27] Webman I 1981 Phys. Rev. Len. 47 1496 
[281 Kirkpatrick S 1973 Rev. Mod. Phys. 45 574 
[29] Paetzold 0 1991 Co,npuc. Phys. C w " .  64 I 
[30] Smuffer D 1985 Inmductiun m Percolulion Tkwy (London: Taylor and Francis) 
[311 Tahir-Kheli R A 1983 Pkys. Rev. B 28 3049 
[32] Nieuwenhuizen T M. van Velthoven P F J, and Emst M H 1987 J. Phys. A: Murh. Gen. 20 4001 
[33] Emst M H, Nieuwenhuizen M T and van Velthoven P F J 1987 J. Phys. A: Math. Gen. 20 5335 
[34] Monte1 G L 1973 P1,y.s. Rev. B 7 950 
[35] Braun M and Kehr K W 1990 Phil. Mag, A 61 855 
[361 Wichmann T. Wang K G and Kehr K W 1994 J. Phys. A: Math. Gen. 27 LZ63 
I371 Richter D. Driesen G, Hempelmann R and Anderson I S 1986 P h y .  Rev. &it. 57 731 
1381 Jonscher A K 1977 Nurure 267 673 

(Boston. MA: Academic) 

N o f a  in Physics) ed A Pekalski at p m s  


